久久美篇网 >工作方案

人教版小学六年级数学下册教案8篇

教学过程是教案的主要部分,教案直接影响了老师们在教学中的进度,以下是久久美篇网小编精心为您推荐的人教版小学六年级数学下册教案8篇,供大家参考。

人教版小学六年级数学下册教案8篇

人教版小学六年级数学下册教案篇1

?教学内容】人教版小学六年级数学下册。

?教学目标】

1、在丰富的现实情境中认识生活中的折扣现象,理解折扣的含义。

2、能把折扣问题转化成百分数问题,并能准确、灵活地解决生活中的折扣问题。

3.在探索解决“折扣”问题的过程中,体验百分数在现实生活中的应用,获得用数学解决问题的成功体验,提高对数学学习的兴趣。

?教学重点】

理解折扣的意义,感受折扣在生活中的运用,能正确解决生活中简单的折扣问题。

?教学难点】能应用“折扣”的知识灵活解决生活中的相关问题。

?教学准备】多媒体课件

?教学过程】

一、激情导课

1、导入课题

(1)、孩子们!五一和国庆期间,商家为了招揽顾客,经常采用一些促销的手段,你见过哪些促销手段?(降价,打折、买几送几、送货上门等)

(2)、有些同学提到了“打折”,大家看,(出示课件) 你认为打折之后去购买商品,是比原来便宜了还是贵了?

(3)、揭示课题:今天,我们就来学习与打折有关的数学问题——折扣。(板书课题)

2、明确目标

师:对于折扣,你知道些什么?还想知道什么?随着学生的回答教师出示学习目标:(1)、知意义 。(2)、会运用

刚才有同学提到他的理解,那是这样吗?在这节课中你一定会找到答案的。好,让我们进行今天的第一个学习任务。

二、民主导学

任务一:理解折扣的意义

1、任务呈现:请大家自学书97页第一自然段,完成下面的问题,有困难的组内互相帮助。

(1)什么是打折?

(2)几折表示( )也就是( )

(3)八折=( — )=( )% 九五折= ( — )= ( )﹪

(4)八折表示什么?九五折表示什么?

2、自主学习

学生自学后完成,如遇到困难可以组内互相帮助。

3、展示交流

(1)明确”打折”的含义

打折就是商店降价出售,几折就是十分之几,百分之几十。

(2)明确“九折”“八五折”的含义

九折就是现价是原价的十分之九,百分之九十。

八五折表示现价是原价的十分之八点五,百分之八十五,谁是谁的85%呢?谁能说一说八五折的具体含义?

(3)及时巩固

也就是说,折扣都可以转化成百分数,是这样的吗?那你能不能很快地将下面的折扣改写成百分数。你能说说这些折扣的意思吗?(课件出示图)用谁是谁的百分之几描述。

七折 六五折 八八折

(4)小结

同学们,我们说了这么多折扣的意思,几折就表示十分之几,也就是百分之几十。如八五折:现价是原价的85%(或十分之八点五)

刚才我们了解了这么多的折扣知识,下面看我们能不能利用这些折扣知识帮解决几个实际问题。

任务二:用折扣解决问题(例题4(1))

1、出示例4的第(1)题:

爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售,买这辆车用了多少钱?

小结:孩子们,你们听明白了吗?他是把折扣问题转化成百分数问题解决的。看来呀,关于折扣的问题我们只要把它转化成百分数问题就能顺利解决了。看来这道题没有难倒大家,好,来道难点的。

2、任务呈现

幻灯出示例4的第(2)题:

爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

2、自主学习

学生独立思考,自主解决。

3、展示交流

是啊!九折就是便宜了一折,我们是说打九折销售,在国外有些国家就说成降价10%。说法是不一样但意思一样吗?六折就是便宜了几折,八五折呢?

4、比较上两题的共同点和不同点,请大家仔细观察我们刚才这两道题,有什么共同点和不同点,都已知了原价的折扣,求现价和便宜了多少钱,在解答方法上我们都是求一个数的百分之几是多少。. 折扣问题的应用题其实就是百分数应用题,解答时可以按照百分数应用题的方法去解答。

5、同学们!通过这几次的购物经历,老师发现大家理解了折扣的含义,其实关于折扣还有很多的小奥秘。如果商场打折你最想让他打几折呢?也就是折扣数越小越好,刚才有同学提到0折,其实0折并不是不花钱,是什么意思呢?大家可以上网查一查。

看这道题,同一款米奇书包,在a店打八折,在b店打九折,如果是你,你会到哪个店去买?

那如果老师告诉你这个书包的原价,你还会这样选择吗?a店原价95元,b店原价80元。想想看你要去哪个店去买?非常好,大家都拿出笔来开始计算了。

小结:同学们灵活运用折扣知识解决了这么多的问题,真不错。看来我们在购物时,不能仅看折扣,还要看这件商品原价,当然我们还要注意这件商品的质量、你是否需要等等,不要被商家的促销手段所蒙骗,做一个理智地消费者。

好,这节课你学得怎么样呢?我们检测一下吧?

三、检测导结

1、目标检测

一、填空、

1、七折=( )%=( — ) 95%=( )折。

2、九五折表示现价是( )的( )%。

3、一件衣服打六八折销售,就是便宜了原价的( )%

四、解决问题

一个书包原价100元,现在商店打八八折销售,买这个书包现在要花多少钱?便宜了多少钱?

2、结果反馈

学生独立完成后,教师出示答案,订正。

3、反思小结

折扣是百分数在生活中应用的一个例子,百分数在生活中的应用还非常广泛,这些知识都等着我们去发现、去思考、去探索,希望大家能做个有心人!可不要让自己的学习成绩打了“折扣”哦!

人教版小学六年级数学下册教案篇2

教案设计

设计说明

图形的放大与缩小是比的实际应用。根据《数学课程标准》中“要培养学生的应用意识”的理念,本节课在教学设计上积极引导学生用数学的眼光看待生活中的放大与缩小现象。为学生提供充分的探索空间,培养学生的空间观念。基于以上教学理念,本节课在教学设计上有以下特点:

1.联系生活实际,体会图形放大与缩小的应用价值。

教育家卢梭认为:教学应让学生从生活中,从各种活动中进行学习,通过与生活实际相联系,获得直接经验。因此,在教学中,注重数学与生活的联系,有效利用教材中的图片,使学生了解无论是照相还是用放大镜看书、用投影仪放大图表,都离不开图形的放大与缩小知识,这部分知识有很强的实用价值。

2.在观察、操作中理解图形放大与缩小的意义和方法。

在数学教学中,让学生经历观察、操作、交流的过程,可以帮助学生获得直接的感性认识,有利于学生对知识的理解。基于以上认识,教学中,注意引导学生借助对例题的探究,弄清图形放大与缩小的意义和方法,并能在方格纸上按一定的比画出放大与缩小后的图形,使学生认识到把一个图形按一定的比放大或缩小,只要把图形的各边按一定的比放大或缩小即可。同时,也使学生认识到把一个图形按一定的比放大或缩小后,只是图形的大小改变了,形状没有发生变化,从而真正理解并掌握图形的放大与缩小的意义。

课前准备

教师准备 ppt课件 纸卡

学生准备 方格纸

教学过程

情境导入

1.观察、感受图形的放大与缩小。

(1)观察、感受。

①出示写有“图形的放大与缩小”的纸卡。

提问:纸卡上写的是什么?

(纸卡上的字为小5号字,学生跃跃欲试后会有些失望,因为看不清)

②把纸卡放到展台上,调整缩放键,逐渐调大。

提问:纸卡上写的是什么?

生抢答:图形的放大与缩小。

(2)引导学生思考。

师:为什么纸卡上的字之前看不清,而现在看清了呢?

生:因为字被放大了。

2.结合生活实际,导入新课。

(1)过渡:生活中经常会遇到图形的放大与缩小现象,下面就让我们一起来感受一下图形的放大与缩小。

(课件出示教材59页主题图)

这些现象中,哪些是把物体放大?哪些是把物体缩小?

预设

生1:图1是把物体缩小。

生2:图2、图3、图4都是把物体放大。

(2)导入新课。

今天,就让我们从数学的角度一起来探究图形的放大与缩小现象。(板书:图形的放大与缩小)

设计意图:创设一个感受图形的放大与缩小的情境,激发学生从数学的角度探究图形的放大与缩小现象的兴趣,使学生在观察、体验中初步感知图形的放大与缩小。

探究新知

1.探究把图形放大的意义和方法。

(1)课件出示教材60页例4。

(2)思考、交流。

提问:“按2∶1放大”是什么意思?

生:“按2∶1放大”就是把图形的各边的长放大到原来的2倍。

(3)画图方法。

①提问:以正方形为例,具体画图时应该怎样做?

预设

生:正方形原来的边长是3个单位长度,现在按2∶1放大后,边长应该是6个单位长度。

②画图。

(学生独立画放大后的正方形,教师巡视指导)

(4)完成例4。

①怎样画长方形?

预设

生:把长方形的长和宽分别放大到原来的2倍,画出长方形。

②怎样画三角形?

预设

生:把直角三角形的两条直角边分别放大到原来的2倍后,连接两条直角边的端点。

(可引导学生用数方格法验证,当直角三角形的两条直角边放大到原来的2倍时,直角三角形的斜边也放大到原来的2倍)

人教版小学六年级数学下册教案篇3

一、学习目标

(一)学习内容

?义务教育教科书数学》(人教版)六年级下册第33—34页的例2和例3。例2是以探索圆锥的体积与和它等底等高的圆柱体积之间的关系为例,让学生在探究过程中获得数学活动经验。例3则是在例2的基础上运用圆锥的体积公式解决实际问题,丰富解决问题的策略,感受数学与生活密不可分的联系。

(二)核心能力

在探索圆锥的体积与和它等底等高的圆柱体积之间的关系的过程中,渗透转化思想,发展推理能力。

(三)学习目标

1.借助已有的知识经验,通过观察、猜测、实验,探求出圆锥体积的计算公式,并能运用公式正确地解决简单的实际问题。

2.在圆锥体积计算公式的推导过程中,进一步理解圆锥与圆柱的联系,发展推理能力。

(四)学习重点

圆锥体积公式的理解,并能运用公式求圆锥的体积。

(五)学习难点

圆锥体积公式的推导

(六)配套资源

实施资源:《圆锥的体积》名师课件、若干同样的圆柱形容器、若干与圆柱等底等高和不等底等高的圆锥形容器,沙子和水

二、教学设计

(一)课前设计

1.复习任务

(1)我们学过哪些立体图形?它们的体积计算公式分别是什么?请你整理出来。

(2)这些立体图形的体积计算公式是怎么推导的?运用了什么方法?请整理出来。

设计意图:通过复习物体的体积公式以及圆锥体积的推导,深化转化思想在生活中的应用,也为圆锥体积的推导埋下伏笔。

(二)课堂设计

1.情境导入

(出示沙堆)

师:你们有办法知道这个沙堆的体积吗?

学生自由发言,提出各种办法。

预设:把它放进圆柱形的容器里,测量出圆柱的底面积和高就可以知道等等

师:能不能像其它立体图形一样,探究出一个公式来求圆锥的体积呢?这节课我们来研究。板书课题

设计意图:利用情境引入,激发学生求知的欲望,引出求圆锥体积公式的必要性。

2.问题探究

(1)观察猜想

师:你们觉得,圆锥的体积和我们认识的哪种立体图形的体积可能有关?为什么?

学生自由发言。

(圆柱,圆柱的底面是圆,圆锥的底面也是圆……)

师:认真观察,它们之间的体积会有什么关系?(出示圆柱、圆锥的教具)

学生猜想。

(2)操作验证

师:圆锥的体积究竟和圆柱的体积有什么关系?请同学们亲自验证。

实验用具:教师准备等底等高和不等底等高的各种圆柱、圆锥模具,一些水。

实验要求:各组根据需要先上台选用实验用具,然后小组成员分工合作,做好实验数据的收集和整理。

1号圆锥2号圆锥3号圆锥

次数

与圆柱是否等底等高

学生选过实验用具后进行试验,教师巡视,发现问题及时指导,收集有用信息。

(3)交流汇报

①汇报实验结果

各组汇报实验结果。

②分析数据

师:观察全班实验的数据,你能发现什么?

(大部分实验的结果是能装下三个圆锥的水,也有两次多或四次等)

师:什么情况下,圆柱刚好能装下三个圆锥的水?

各组互相观察各自的圆柱和圆锥,发现只有在等底等高的情况下,圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。

师:是不是所有符合等底等高条件的圆柱、圆锥,它们的体积之间都具有这种关系呢?

老师用标准教具装沙土再演示一次,加以验证。

③归纳小结

师:谁能来总结一下,通过实验我们得到的结果是什么?

(4)公式推导

师:你能把上面的试验结果用式子表示吗?(学生尝试)

老师结合学生的回答板书:

圆锥的体积公式及字母公式:

圆锥的体积=×圆柱的体积

=×底面积×高

s=sh

师:在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

进一步强调等底等高的圆锥和圆柱才存在这种关系。

设计意图:通过观察、猜测,让学生感知圆锥的体积与圆柱体积之间存在着一定的关系,渗透转化的思想。再通过对实验数据的分析,进一步感知圆锥的体积是和它等底等高的圆柱的体积的三分之一,在这一过程中,发展学生的推理能力。

考查目标1、2

(5)实践应用

师:还记得这堆沙子吗?如果给你了它的高和底面的直径,你能算出这堆沙的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约重多少吨?(得数保留两位小数。)

师:要求沙堆的体积需要已知哪些条件?

(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

学生试做后交流汇报。

已知圆锥的底面直径和高,可以直接利用公式

v=π()h来求圆锥的体积。

师:在计算过程中我们要注意什么?为什么?

注意要乘以,因为通过实验,知道圆锥的体积等于与它等底等高的圆柱体积的。

3.巩固练习

(1)填空。

①圆柱的体积是12m,与它等底等高的圆锥的体积是()m。

②圆锥的体积是2.5m,与它等底等高的圆柱的体积是()m。

③圆锥的底面积是3.1m2,高是9m,体积是()m。

(2)判断,并说明理由。

①圆锥的体积等于圆柱体积的。()

②圆锥的体积等于和它等底等高的圆柱体积的3倍。()

(3)课本第34页的做一做。

①一个圆锥形的零件,底面积是19cm2,高是12cm,这个零件的体积是多少?

②一个用钢铸造成的圆锥形铅锤,底面直径是4cm,高是5cm。每立方厘米钢大约重7.8g。这个铅锤重多少克?(得数保留整数)

4.课堂总结

师:这节课你收获了什么?和大家分享一下吧!

圆柱的体积是与它等底等高圆锥体积的3倍;圆锥的体积是与它等底等高圆柱体积的三分之一;v圆锥=v圆柱=sh。

(三)课时作业

1.王师傅做一件冰雕作品,要将一块棱长30厘米的正方体冰块雕成一个最大的圆锥,雕成的圆锥体积是多少立方厘米?

答案:30÷2=15(厘米)

×3.14×152×30

=235.5×30

=7065(立方厘米)

答:雕成的圆锥的体积是7065立方厘米。

解析:这是一道考察学生空间思维能力的题,要在正方体里面雕一个最大的圆锥,必须满足圆锥的底面直径等于正方体的棱长,圆锥的高也要等于正方体的棱长,在实际中感受生活和数学的紧密联系,同时为下面在长方体里放一个最大的圆锥做了铺垫。考查目标1、2

2.看看我们的教室是什么体?(长方体)

要在我们的教室里放一个尽可能大的圆锥体,想一想,可以怎样放?怎样放体积最大?(测量教室长12m,宽6m,高4m.先计算,再比较怎样放体积最大的圆锥体。)

解析:这是一道开放题,有一定的难度,在考察学生对圆锥体积理解的基础上,又综合了长方体的知识,对学生的空间想象能力要求比较高。

①以长宽所在的面为底面做最大的圆锥,此时圆锥的高为4m,底面圆的直径为6m.

②以宽高所在的面为底面做最大的圆锥,此时圆锥的高为12m,底面圆的直径为4m.

③以长高所在的面为底面做最大的圆锥,此时圆锥的高为6m,底面圆的直径为4m.

以上三种情况计算并加以比较,得出结论。考查目标1、2

人教版小学六年级数学下册教案篇4

目标:

1、 理解圆柱体积公式的推导过程,掌握计算公式。

2、 会运用公式计算圆柱的体积,提高学生知识迁移的能力。

3、 在公式推导中渗透转化的思想。

重点:

理解圆柱的体积公式的推导过程。

难点:

圆柱体积的计算。

用具:

课件、圆柱模型。

过程:

1、 教师提问。

(1)什么叫物体的体积?怎样求长方体的体积?

(2)圆的面积公式是什么?

(3)圆的面积公式是怎样推导的?

2、 教师:同学们,我们在研究圆的面积公式的推导时,是把它转化成我们学过的长方形来解决的,那么,圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课,我们就来研究这个问题。(板书:圆柱的体积)

1、 教学例5。

讲授圆柱体积公式的推导。(演示动画“圆柱的体积”)

(1)教师演示。

把圆柱的底面分成16个相等的扇形,再按照这些扇形的形状,沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

(2)学生利用学具操作。

(3)启发学生思考、讨论:

①圆柱切开后可以拼成一个什么立体图形?(近似的长方体)

②通过刚才的实验你发现了什么?

a、拼成的这个近似长方体的立体图形和圆柱相比,体积大小没变,但形状变了。

b、拼成的这个近似长方体的立体图形和圆柱相比,底面的形状变了,由圆变成了近似长方形的立体图形,而底面的面积大小没有发生变化。

c、这个近似长方体的立体图形的高就是圆柱的高,高的长度没有变化。

(4)学生根据圆的面积公式的推导过程,进行猜想。

①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?

②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?

③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?

(5)通过以上的观察,启发学生说出发现了什么。

①平均分的份数越多,拼起来的形状越接近长方体。

②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体图形的形状就越接近长方体。

(6)推导圆柱的体积公式。

①学生分组讨论:圆柱的体积怎样计算?

②学生汇报讨论结果,并说明理由。

教师:因为长方体的体积等于底面积乘高,(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积)近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)

③用字母表示圆柱的体积公式。(板书:v=sh)

2、 教学例6。

出示教材第26页例6。

(1)学生读题,理解题意。

(2)教师:要知道能否装下这袋奶,首先要计算出什么?

学生:杯子的容积。

(3)指明要计算杯子的容积,学生在练习本上完成。

杯子的底面积:3.14×(8÷2)2=50、24(cm2)

杯子的容积:50、24×10=502、4(ml)

答:因为502、4大于498,所以杯子能装下这袋牛奶。

3、 教学例7。

师:看下面的问题你能解答吗?遇到了什么问题?有什么办法吗?(课件出示:教材第27页例7)

生1:这个瓶子不是一个完整的圆柱,无法直接计算容积。

生2:我们可以先转化成圆柱,再计算瓶子的容积。

师:怎样转化呢?说说你的想法。

学生可能会说:

瓶子里的水的体积始终是不变的,即使瓶子倒置后,水的体积与原来还是一样的,这样就说明瓶子的容积其实就是水的体积加上18cm高的圆柱的体积。

也就是把瓶子的容积转化成了两个圆柱的体积。

……

师:尝试自己解答一下。

学生尝试解答;教师巡视了解情况。

组织学生交流汇报:

瓶子的容积=3.14×(8÷2)2×7+3.14×(8÷2)2×18

3.14×(8÷2)2×7+3.14×(8÷2)2×18

=3.14×16×(7+18)

=3.14×16×25

=1256(cm3)

=1256(ml)

答:这个瓶子的容积是1256ml。

只要学生解答正确就要给予肯定,不强求算法一致。

?设计意图:让学生联系实际,灵活地运用圆柱体积的计算方法解决实际问题,使学生体会到在生活中,数学知识应用的广泛性】

师:在本节课的学习中,你有哪些收获?

学生可能会说:

利用“转化”可以帮助我们解决问题。

我们利用了体积不变的特性,把不规则图形转化成规则图形来进行体积的计算。

在五年级时,计算梨的体积也是用了转化的方法。

……

?设计意图:既帮助学生梳理了所学知识,又及时总结了学习方法,渗透了数学思想】

圆柱的体积

长方体的体积=底面积×高

↓ ↓ ↓

圆柱的体积=底面积×高

v=

a类

1、填表。

底面积s(平方米) 高h(米) 圆柱的体积v(立方米)

15 3

6.4 4

2、一个圆柱形水池,底面半径是10米,深1.5米。这个水池的占地面积是多少平方米?水池的容积是多少立方米?

(考查知识点:圆柱的体积;能力要求:掌握圆柱体积的计算方法)

b类

两个底面积相等的圆柱,一个圆柱的高为9分米,体积为162立方分米。另一个圆柱的高为3分米,体积是多少立方分米?

(考查知识点:圆柱的体积;能力要求:能运用圆柱体积计算的方法解决简单的问题)

课堂作业新设计

a类:

1、 45 25.6

2、 314平方米 471立方米

b类:

54立方分米

教材习题

第25页“做一做”

1、 75×90=6750(cm3)

2、 3.14×(1÷2)2×10=7.85(m3)

第26页“做一做”

1、 3.14×(8÷2)2×15=753.6(cm3) 753.6cm3=0.7356l 0.75361 不够。

2、 3.14×(0.4÷2)2×5÷0.02≈31(张)

第27页“做一做”

3.14×(6÷2)2×10=282.6(cm3) 282.6cm3=282.6ml

第28页“练习五”

1、 3.14×52×2=157(cm3)

3.14×(4÷2)2×12=150.72(cm3)

3.14×(8÷2)2×8=401.92(cm3)

2、 3.14×(60÷2)2×90=254340(cm3) 254340cm3=254340ml

3、 3.14×(3÷2)2×0.5×2=7.065(m3)

4、 80÷16=5(cm)

5、 3.14×1.52×2×750=10597.5(千克) 10597.5千克=10.5975吨

6、 表面积:3.14×6×12+3.14×(6÷2)2×2=282.6(cm2)

体积:3.14×(6÷2)2×12=339.12(cm3)

表面积20×10+20×15+15×10)×2=1300(cm2) 体积:20×10×15=3000(cm3)

表面积:3.14×14×5+3.14×(14÷2)2×2=527.52(cm2)

体积:3.14×(14÷2)2×5=769.3(cm3)

7、 25cm=0.25m 35—3.14×(2÷2)2×0.25=34.215(立方米)

8、 3.14×(6÷2)2×11×(2+1)=932.58(cm3) 932.58cm3=932.58ml

932、58800 不够

9、 81÷4.5×3=54(dm3)

10、 3.14×(10÷2)2×2=157(cm3)

11、 3.14×(1.2÷2)2×20×50=1130.4(cm3) 1130.4cm3=1.1304l 1.13041 能装满。

12、 3.14×(10÷2)2×80—3.14×(8÷2)2×80=2260.8(cm3)

13、 30×10×4÷6=200(cm3)=200(ml)

14、 3.14×102×20=6280(cm3) 3.14×202×10=12560(cm3)

15、 第四个圆柱的体积最小;第一个圆柱的体积最大。

发现:同样一张长方形纸可以围成两个不同的圆柱,且以长边为圆柱的底面周长时围成圆柱的体积最大。

人教版小学六年级数学下册教案篇5

课前准备

教师准备 ppt课件

教学过程

⊙提问导入

1.提问激趣。

根据“甲是乙的”,你能想到什么?

预设

生1:乙是甲的。

生2:甲比乙少,乙比甲多。

生3:甲是甲、乙之差的5倍。

生4:甲是甲、乙之和的。

生5:乙比甲多20%。

……

2.导入新课。

这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

⊙回顾与整理

1.分数(百分数)的一般应用题。

(1)分数(百分数)乘法应用题的特征及解题关键各是什么?

①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的意义正确列式。

(2)分数(百分数)除法应用题的特征及解题关键各是什么?

①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

(3)分数(百分数)应用题的常见题型有哪些?如何解答?

①求甲是乙的几分之几(百分之几):甲÷乙。

②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

③已知甲比乙多(少)几分之几,求甲:乙×。

④已知甲比乙多(少)几分之几,求乙:甲÷。

⑤求百分率。

发芽率=×100%

小麦的出粉率=×100%

产品的合格率=×100%

出勤率=×100%

⑥求利息:利息=本金×利率×时间

2.分数应用题的特例——工程问题。

(1)什么是工程问题?

明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

(2)解决工程问题的关键是什么?

明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

(3)工程问题的数量关系式有哪些?

预设

生1:工作总量=工作效率×工作时间

生2:工作效率=工作总量÷工作时间

生3:工作时间=工作总量÷工作效率

生4:合作时间=工作总量÷工作效率和

人教版小学六年级数学下册教案篇6

设计说明

“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。

1.借助定义、实例,渗透函数思想。

教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。

2.借助具体情境,在观察、讨论中发现规律。

教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。

3.借助已有的学习经验总结反比例关系式。

因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。

课前准备

教师准备 ppt课件

学生准备 玻璃杯 直尺 水 实验记录单

教学过程

⊙复习引入

1.复习。

课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?

(1)引导学生独立解决问题。

(2)提问:你是根据什么公式进行计算的?

预设

生:圆柱的体积=底面积×高。

(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?

预设

生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。

生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。

2.引入课题。

如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)

设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。

⊙探究新知

1.在具体情境中初步感知成反比例关系的量。

(1)课件出示教材47页例2,引导学生结合问题进行观察。

师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。

杯子的底面积与水的高度的变化情况如下表。

杯子的底面积/cm2

10

15

20

30

60

水的高度/cm

30

20

15

10

5

①表中有哪两种量?

②水的高度是怎样随着杯子底面积的大小变化而变化的?

③相对应的杯子的底面积与水的高度的乘积分别是多少?

(2)学生思考后在小组内交流。

(3)全班交流。

预设

生1:有杯子的底面积和水的高度这两种量。

生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。

生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。

(4)明确什么是成反比例的量。

因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。

人教版小学六年级数学下册教案篇7

?教学目标】

1、能在具体的情境中,探索确定位置的方法,说出某一物体的位置。

2、会在方格纸上用“数对”确定物体的位置。

3、发展空间观念,初步体会到数形结合的思想。

4、体会生活中处处有数学,提高运用知识解决实际问题的能力。

?教学重点】

使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

?教学难点】

在方格纸上用“数对”确定位置。

?教法】

情境教学法,创设找图书管理员的情境,激发学习兴趣,感知确定位置的方法。

?学法】

积极参与法,在学习过程中积极思考,理解用数对确定位置的方法,并积极参与动手操作活动,提高看图能力。

?教学准备】

多媒体课件

?教学过程】

一、谈话导入

1、师生谈话。

学校让我们班推荐一位同学到学校图书室做图书管理员,老师已经选好了,那么你们想不想知道这位同学是谁吗?

这位同学在班级中的位置是第三组的。你们知道这位同学是谁吗?他可能是哪几位同学?如果要找到这位同学,还要知道什么条件?

这位同学的座位是在第3排,大家知道这位同学是谁吗?

2、导入新课。

今天这节课,我们就一起来学习确定位置的方法。

板书课题:用数对确定位置

?设计意图:通过谈话中引入数学问题,充分调动了学生的学习兴趣和积极性,为学习新知奠定了基础。】

二、探索新知

1、教学例1。

(1)出示例题1教学图。

让学生观察图,说说张亮同学坐在第几列?第几行。

(竖排叫做列,横排叫做行)

(2)张亮同学坐在第2列,第3行。用数对来表示(2,3)。

(3)让学生用数对表示王艳和赵强的位置。

王艳(3,4)赵强(4,3)

(4)小结。

确定一个同学在教室的位置,要考虑两个要素:第几列和第几行。

?设计意图:通过具体的实例引导学生认识第几列第几行的判断方法,经历应用数学知识分析问题的解决问题的过程】

2、完成第3页的“做一做”。

课件出示电影院和电影票的图片。出示题目:举出生活中确定位置的例子,并说一说确定位置的方法。

(电影院用电影票来确定位置,电影票一般都写着“几排几号”,“排”表示行,“号”表示列。比如“3排7号”用数对表示是(7,3)。

?设计意图:从学生熟悉的情景出发,选择学生感举的事物,提出相关问题,激发学生学习兴趣。】

3、教学例2。

(1)认识方格图。

出示动物园示意图。

指导学生观察图。

这幅动物园示意图与以前见过的示意图有以下几点不同:一是动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容;二是表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上;三是方格纸的竖线从左到右依次标注了0,1,2,…,6;横线从下往上依次标注了0,1,2,…,6,其中的“0”既是列的起始,也是行的起始。

(2)用数对表示图中各场馆的位置。

提问1:我用了数对(3,0)来表示大门的位置,你们知道我是怎样想的吗?

?大门在示意图中处于“竖线3,横线0”的位置上,所以可以用数对(3,0)来表示】

你们能用数对表示其他场馆所在的位置吗?

?熊猫馆(3,5)大象馆(1,4)猴山(2,2)海洋馆(6,4)】

(3)根据数对标位置

在图上标出下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。

?设计意图:通过具体的事例认识和理解位置与坐标中数值的对应关系,让学生不但会用数对描述现实生活中的位置,还会描述坐标图上的物体的位置。】

三、巩固运用

1、小游戏:看谁反应最快。

老师说出一组数对,相应的同学要在3秒内起立。

2、做一做。(课件出示)

?设计意图:通过练习,培养学生分析问题、解决问题的能力,加深对知识的理解和应用。】

四、课堂总结

这节课我们学习如何用数对来确定位置,用数对确定位置时,数对中的前一个数表示第几列,后一个数是表示第几行。

五、板书设计

用数对确定位置

竖排叫做列从左往右

横排叫做行从前到后

张亮坐在第2列第3行(2,3)

人教版小学六年级数学下册教案篇8

一、教学内容

这一册教材包括下面一些内容:负数、圆柱与圆锥、比例、统计、数学广角、整理和复习等。

教学重点:百分数的.应用、圆柱的侧面积和表面积的计较方法、圆柱和圆锥的体积计较方法、比例的意义和基本性质、正比例和反比例、扇形统计图、转化的解题策略以及总复习的四个板块的系列内容。

教学难点:圆柱和圆锥体积计较方法的推导、成正比例和反比例量的判断、用方向和距离确定位置、众数和中位数平均数、解题策略的矫捷运用。

二、教学目标

这一册教材的教学目标是让学生:

1、领会负数的意义,会用负数表示一些日常糊口中的问题。

2、理解比例的意义和基本性质,会解比例,理解正比例和反比例的意义,可以或许判断两种量是否成正比例或反比例,会用比例知识解决比较简单的现实问题;能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并能根据其中一个量的值估量另一个量的值。

3、履历对“抽屉原理”的探究过程,初步领会“抽屉原理”,会用“抽屉原理”解决简单的现实问题,发展分析、推理的能力。

4、认识圆柱、圆锥的特征,会计较圆柱的表面积和圆柱、圆锥的体积。

5、体味学习数学的乐趣,提高学习数学的乐趣,建立学好数学的信心。

6、履历从现实糊口中发现问题、提出问题、解决问题的过程,体味数学在日常糊口中的作用,初步形成综合运用数学知识解决问题的能力。

三、教材分析

在数与代数方面,这一册教材安排了负数和比例两个单元。连系糊口实例使学生初步认识负数,领会负数在现实糊口中的应用。比例的教学,使学心理解比例、正比例和反比例的概念,会解比例和用比例知识解决问题。

在空间与图形方面,这一册教材安排了圆柱与圆锥的教学,在已有知识和经验的基础上,使学生通过对圆柱、圆锥特征和有关知识的摸索与学习,掌握有关圆柱表面积,圆柱、圆锥体积计较的基本方法,促进空间观念的进一步发展。

在统计方面,本册教材安排了有关数据可能产生误导的内容。通过简单事例,使学生认识到利用统计图表虽便于作出判断或预测,但如不认真分析也有可能获得不准确的信息导致错误判断或预测,明白对统计数据进行认真、客观、全面的分析的重要性。

在用数学解决问题方面,教材一方面连系圆柱与圆锥、比例、统计等知识的学习,教学用所学的知识解决糊口中的简单问题;另一方面安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等勾当,履历探究“抽屉原理”的过程,体味若何对一些简单的现实问题“模子化”,从而学习用“抽屉原理”加以解决,感受数学的魅力,发展学生解决问题的能力。

本册教材根据学生所学习的数学知识和糊口经验,安排了多个数学综合应用的实践勾当,让学生通过小组合作的探究勾当或有现实背景的勾当,运用所学知识解决问题,体味摸索的'乐趣和数学的现实应用,感受用数学的愉悦,培育学生的数学应用意识和实践能力。

整理和复习单元是在完成小学数学的全数教学内容之后,引导学生对所学内容进行一次系统的、全面的回顾与整理,这是小学数学教学的一个重要环节。通过整理和复习,使原来分散学习的知识得以梳理,由数学的知识点串成知识线,由知识线构成知识网,从而帮助学生完美思维中的数学认知结构,为初中的数学学习打下良好的基础;同时进一步提高学生综合运用所学知识分析问题和解决问题的能力。

四、学情分析

本班共有学生29人,大部分学生对数学有上进心;有些学生的学习立场还需不断规矩;有部分学生自觉性不够,上课注意力不集中;不能及时完成功课等;还有个别学生(胡志强、裴玉琴、陈建宏)基础知识掌握不够扎实,学习数学有很大坚苦。所以在新的学期里,在规矩学生学习立场的同时,应加强培育他们的各种学习数学的能力,利用小组会商的学习体例,使学生在会商中人人参与,各抒己见,互相开导, 自己找出解决问题的方法,体验学习数学的欢愉。

五、教学方法:

教学方法:

1、创设愉悦的教学情境,激发学生学习的乐趣。提倡学法的多样性,关注学生的小我体验。

2、在集体备课基础上,还应同年级教员互换听课,及时反思,真正体味教学设计意图,提高驾驭讲堂的能力。教师应转变观念,采用“激励性、自主性、创造性”教学策略,以问题为线索,恰当运用教材、媒体、现实材料突破重点、难点,变多讲多练,为精讲精练,真正实现师生互动、生生互动,从而调动学生积极主动学习,提高教与学的效益。

3、不增减课程和课时,不提高要求,不购买其他复习资料,不留机械、重复、奖惩性功课和功课总量不跨越规定时间,讲堂训练形式的多样化,重视一题多解,从不同角度解决问题。

4、加强基础知识的教学,使学生切实掌握好这些基础知识。本学期要以新的教学理念,为学生的'持续发展供给丰富的教学资源和空间。要充分发挥教材的优势,在教学过程中,亲近数学与糊口的联系,确立学生在学习中的主体地位,创设愉悦、开放式的教学情境,使学生在愉悦、开放式的教学情境中满足个性化学习需求,从而达到掌握基础知识基本技术,培育学生立异意识和实践能力的目标。

5、在教学中注意采用开放式教学,培育学生根据具体情境选择恰当方法解决现实问题的意识。如通过一题多解、一题多变、一题多问、一题多编等路子,拓宽学生的知识面,沟通知识之间的内在联系,培育学生的应变能力。

6、练习的安排,要由浅入深,体现条理性。对不同的学生,要有不同的要乞降练习,对优生、学困生都要体现有所指导。增强数学实践勾当,让学生认识数学知识与现实糊口的关系,使学生感到糊口中时时处处有数学,用数学的现实意义来诱发和培育学生热爱数学的情感。

7、加强对家庭教育的指导。引导家长遵循教育规律和学生身心发展的规律、科学育人。引导学生正确看待成功与失败,勇敢战胜学习和糊口中的坚苦,做学习和糊口的强者。

学习体例:

①预习教材,提出知识重点,自己是通过什么路子理解的,还有哪些疑问。

②通过查阅资料找出解决问题的方法。

③ 教师作为讲堂教学的指导者,以学生自主学习为主,主张探究式、体验式的学习方法,培育学生的脱手操作能力和发散思维能力。

④利用小组会商的学习体例,使学生在会商中人人参与,各抒己见,互相开导, 自己找出解决问题的方法,体验学习数学的欢愉。

六、课时安排

六年级下学期数学教学安排了60课时的教学内容,各部分教学内容讲讲课时大致安排如下,教师教学时可以根据本班具体环境恰当矫捷掌握。

会计实习心得体会最新模板相关文章:

人教版小学语文四年级上册教案6篇

小学六年级下册数学教学工作计划8篇

小学六年级数学下册教学工作计划7篇

人教版三年级数学工作计划8篇

人教版三年级数学上册教学计划7篇

人教版三年级数学上册教学计划通用5篇

人教版八年级数学工作计划6篇

人教版语文四年级教案6篇

人教版语文四年级教案优秀7篇

三年级下册的数学教案通用8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    47940

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。