久久美篇网 >工作方案

数的分解教案7篇

教案是授课教师教学思想、教学方法及教学组织能力的重要体现,教师根据课程标准的要求来制定教案,以下是久久美篇网小编精心为您推荐的数的分解教案7篇,供大家参考。

数的分解教案7篇

数的分解教案篇1

学习目标

1、 学会用公式法因式法分解

2、综合运用提取公式法、公式法分解因式

学习重难点 重点:

完全平方公式分解因式.

难点:综合运用两种公式法因式分解

自学过程设计

完全平方公式:

完全平方公式的逆运用:

做一做:

1.(1)16x2-8x+_______=(4x-1)2;

(2)_______+6x+9=(x+3)2;

(3)16x2+_______+9y2=(4x+3y)2;

(4)(a-b)2-2(a-b)+1=(______-1)2.

2.在代数式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序号)

3.下列因式分解正确的是( )

a.x2+y2=(x+y)2 b.x2-xy+x2=(x-y)2

c.1+4x-4x2=(1-2x)2 d.4-4x+x2=(x-2)2

4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

5.计算:20062-40102006+20052=___________________.

6.若x+y=1,则 x2+xy+ y2的值是_________________.

想一想

你还有哪些地方不是很懂?请写出来。

____________________________________________________________________________________ 预习展示一:

1.判别下列各式是不是完全平方式.

2、把下列各式因式分解:

(1)-x2+4xy-4y2

(2)3ax2+6axy+3ay2

(3)(2x+y)2-6(2x+y)+9

应用探究:

1、用简便方法计算

49.92+9.98 +0.12

拓展提高:

(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

(2)4x2+y2-4xy-12x+6y+9=0

求x、y关系

(3)分解因式:m4+4

教后反思 考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的,但是这里有用到实际中去的例子,对学生来说会难一些。

数的分解教案篇2

15.1.1 整式

教学目标

1.单项式、单项式的定义.

2.多项式、多项式的次数.

3、理解整式概念.

教学重点

单项式及多项式的有关概念.

教学难点

单项式及多项式的有关概念.

教学过程

Ⅰ.提出问题,创设情境

在七年级,我们已经学习了用字母可以表示数,思考下列问题

1.要表示△abc的周长需要什么条件?要表示它的面积呢?

2.小王用七小时行驶了skm的路程,请问他的平均速度是多少?

结论:

1、要表示△abc的周长,需要知道它的各边边长.要表示△abc的面积需要知道一条边长和这条边上的高.如果设bc=a,ac=b,ab=c.ab边上的高为h,那么△abc的周长可以表示为a+b+c;△abc的面积可以表示为 ?c?h.

2.小王的平均速度是 .

问题:这些式子有什么特征呢?

(1)有数字、有表示数字的字母.

(2)数字与字母、字母与字母之间还有运算符号连接.

归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.

判断上面得到的三个式子:a+b+c、 ch、 是不是代数式?(是)

代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.

Ⅱ.明确和巩固整式有关概念

(出示投影)

结论:(1)正方形的周长:4x.

(2)汽车走过的路程:vt.

(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.

(4)n的相反数是-n.

分析这四个数的特征.

它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、 ch、 中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.

请同学们阅读课本p160~p161单项式有关概念.

根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、 ch、 这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.

结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、 .它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、 ch都是二次单项式;a3是三次单项式.

问题:vt中v和t的指数都是1,它不是一次单项式吗?

结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.

生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?

写出下列式子(出示投影)

结论:(1)t-5.(2)3x+5y+2z.

(3)三角尺的面积应是直角三角形的面积减去圆的面积,即 ab-3.12r2.

(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.

我们可以观察下列代数式:

a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?

这样推理合情合理.请看投影,熟悉下列概念.

根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.

a+b+c的项分别是a、b、c.

t-5的项分别是t、-5,其中-5是常数项.

3x+5y+2z的项分别是3x、5y、2z.

ab-3.12r2的项分别是 ab、-3.12r2.

x2+2x+18的项分别是x2、2x、18. 找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.

这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.

Ⅲ.随堂练习

1.课本p162练习

Ⅳ.课时小结

通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.

Ⅴ.课后作业

1.课本p165~p166习题15.1─1、5、8、9题.

2.预习“整式的加减”.

课后作业:《课堂感悟与探究》

15.1.2 整式的加减(1)

教学目的:

1、解字母表示数量关系的过程,发展符号感。

2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。

教学重点:

会进行整式加减的运算,并能说明其中的算理。

教学难点:

正确地去括号、合并同类项,及符号的正确处理。

教学过程:

一、课前练习:

1、填空:整式包括 和

2、单项式 的系数是 、次数是

3、多项式 是 次 项式,其中二次项

系数是 一次项是 ,常数项是

4、下列各式,是同类项的一组是( )

(a) 与 (b) 与 (c) 与

5、去括号后合并同类项:

二、探索练习:

1、如果用a 、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 交换这个两位数的十位数字和个位数字后得到的两位数为

这两个两位数的和为

2、如果用a 、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为 交换这个三位数的百位数字和个位数字后得到的三位数为

这两个三位数的差为

●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?

说说你是如何运算的?

▲整式的加减运算实质就是

运算的结果是一个多项式或单项式。

三、巩固练习:

1、填空:(1) 与 的差是

(2)、单项式 、 、 、 的和为

(3)如图所示,下面为由棋子所组成的三角形,

一个三角形需六个棋子,三个三角形??

( )个棋子,n个三角形需 个棋子

2、计算:

(1)

(2)

(3)

3、(1)求 与 的和

(2)求 与 的差

4、先化简,再求值: 其中

四、提高练习:

1、若a是五次多项式,b是三次多项式,则a+b一定是

(a)五次整式 (b)八次多项式

(c)三次多项式 (d)次数不能确定

2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场

记0分,那么某队在比赛胜5场,平3场,负2场,共积多

少分?

3、一个两位数与把它的数字对调所成的数的和,一定能被14

整除,请证明这个结论。

4、如果关于字母x的二次多项式 的值与x的取值无关,

试求m、n的值。

五、小结:整式的加减运算实质就是去括号和合并同类项。

六、作业:第8页习题1、2、3

15.1.2整式的加减(2)

教学目标:1.会进行整式加减的`运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。

2.通过探索规律的问题,进一步符号表示的意义,发展符号感,发展推理能力。

教学重点:整式加减的运算。

教学难点:探索规律的猜想。

教学方法:尝试练习法,讨论法,归纳法。

教学用具:投影仪

教学过程:

i探索练习:

摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子。按照这样的方式继续摆下去。

(1)摆第10个这样的“小屋子”需要 枚棋子

(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。

二、例题讲解:

三、巩固练习:

1、计算:

(1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

(3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

2、已知:a=x3-x2-1,b=x2-2,计算:(1)b-a (2)a-3b

3、列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么

(1)第一个角是多少度?

(2)其他两个角各是多少度?

四、提高练习:

1、已知a=a2+b2-c2,b=-4a2+2b2+3c2,并且a+b+c=0,问c是什么样的多项式?

2、设a=2x2-3xy+y2-x+2y,b=4x2-6xy+2y2-3x-y,若│x-2a│+

(y+3)2=0,且b-2a=a,求a的值。

3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:

试化简:│a│-│a+b│+│c-a│+│b+c│

小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

作 业:课本p14习题1.3:1(2)、(3)、(6),2。

数的分解教案篇3

教学目标

1.知识与技能

了解因式分解的意义,以及它与整式乘法的关系.

2.过程与方法

经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.

3.情感、态度与价值观

在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.

重、难点与关键

1.重点:了解因式分解的意义,感受其作用.

2.难点:整式乘法与因式分解之间的关系.

3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.

教学方法

采用“激趣导学”的教学方法.

教学过程

一、创设情境,激趣导入

?问题牵引】

请同学们探究下面的2个问题:

问题1:720能被哪些数整除?谈谈你的想法.

问题2:当a=102,b=98时,求a2-b2的值.

二、丰富联想,展示思维

探索:你会做下面的填空吗?

1.ma+mb+mc=( )( );

2.x2-4=( )( );

3.x2-2xy+y2=( )2.

?师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.

三、小组活动,共同探究

?问题牵引】

(1)下列各式从左到右的变形是否为因式分解:

①(x+1)(x-1)=x2-1;

②a2-1+b2=(a+1)(a-1)+b2;

③7x-7=7(x-1).

(2)在下列括号里,填上适当的项,使等式成立.

①9x2(______)+y2=(3x+y)(_______);

②x2-4xy+(_______)=(x-_______)2.

四、随堂练习,巩固深化

课本练习.

?探研时空】计算:993-99能被100整除吗?

五、课堂总结,发展潜能

由学生自己进行小结,教师提出如下纲目:

1.什么叫因式分解?

2.因式分解与整式运算有何区别?

六、布置作业,专题突破

选用补充作业.

板书设计

15.4.1 因式分解

1、因式分解 例:

练习:

15.4.2 提公因式法

教学目标

1.知识与技能

能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

2.过程与方法

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

3.情感、态度与价值观

培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

重、难点与关键

1.重点:掌握用提公因式法把多项式分解因式.

2.难点:正确地确定多项式的最大公因式.

3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

教学方法

采用“启发式”教学方法.

教学过程

一、回顾交流,导入新知

?复习交流】

下列从左到右的变形是否是因式分解,为什么?

(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

问题:

1.多项式mn+mb中各项含有相同因式吗?

2.多项式4x2-x和xy2-yz-y呢?

请将上述多项式分别写成两个因式的乘积的形式,并说明理由.

?教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

二、小组合作,探究方法

?教师提问】 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

?师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

三、范例学习,应用所学

?例1】把-4x2yz-12xy2z+4xyz分解因式.

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

?例2】分解因式,3a2(x-y)3-4b2(y-x)2

?思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)23a2(y-x)+4b2(y-x)2]

=-(y-x)2 [3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)23a2(x-y)-4b2(x-y)2

=(x-y)2 [3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

?例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.

?教师活动】引导学生观察并分析怎样计算更为简便.

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

?教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

四、随堂练习,巩固深化

课本p167练习第1、2、3题.

?探研时空】

利用提公因式法计算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、课堂总结,发展潜能

1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

六、布置作业,专题突破

课本p170习题15.4第1、4(1)、6题.

板书设计

15.4.2 提公因式法

1、提公因式法 例:

练习:

15.4.3 公式法(一)

教学目标

1.知识与技能

会应用平方差公式进行因式分解,发展学生推理能力.

2.过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

3.情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

重、难点与关键

1.重点:利用平方差公式分解因式.

2.难点:领会因式分解的解题步骤和分解因式的彻底性.

3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

教学过程

一、观察探讨,体验新知

?问题牵引】

请同学们计算下列各式.

(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

?学生活动】动笔计算出上面的两道题,并踊跃上台板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

?教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

1.分解因式:a2-25; 2.分解因式16m2-9n.

?学生活动】从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

?教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

二、范例学习,应用所学

?例1】把下列各式分解因式:(投影显示或板书)

(1)x2-9y2; (2)16x4-y4;

(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

?思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

?教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

?学生活动】分四人小组,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

三、随堂练习,巩固深化

课本p168练习第1、2题.

?探研时空】

1.求证:当n是正整数时,n3-n的值一定是6的倍数.

2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.

四、课堂总结,发展潜能

运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.

五、布置作业,专题突破

课本p171习题15.4第2、4(2)、11题.

板书设计

15.4.3 公式法(一)

1、平方差公式: 例:

a2-b2=(a+b)(a-b) 练习:

15.4.3 公式法(二)

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力.

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用.

2.难点:灵活地应用公式法进行因式分解.

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

教学过程

一、回顾交流,导入新知

?问题牵引】

1.分解因式:

(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

(3) x2-0.01y2.

数的分解教案篇4

教学目标:

1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。

2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。

4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。

教学重点:

应用平方差公式分解因式.

教学难点:

灵活应用公式和提公因式法分解因式,并理解因式分解的要求.

教学过程:

一、复习准备 导入新课

1、什么是因式分解?判断下列变形过程,哪个是因式分解?

①(x+2)(x-2)= ②

2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。

x2+2x

a2b-ab

3、根据乘法公式进行计算:

(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

二、合作探究 学习新知

(一) 猜一猜:你能将下面的多项式分解因式吗?

(1)= (2)= (3)=

(二)想一想,议一议: 观察下面的公式:

=(a+b)(a—b)(

这个公式左边的多项式有什么特征:_____________________________________

公式右边是__________________________________________________________

这个公式你能用语言来描述吗? _______________________________________

(三)练一练:

1、下列多项式能否用平方差公式来分解因式?为什么?

① ② ③ ④

2、你能把下列的数或式写成幂的形式吗?

(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

(四)做一做:

例3 分解因式:

(1) 4x2- 9 (2) (x+p)2- (x+q)2

(五)试一试:

例4 下面的式子你能用什么方法来分解因式呢?请你试一试。

(1) x4- y4 (2) a3b- ab

(六)想一想:

某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?

数的分解教案篇5

(一)学习目标

1、会用因式分解进行简单的多项式除法

2、会用因式分解解简单的方程

(二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。

难点:应用因式分解解方程涉及到的较多的'推理过程是本节课的难点。

(三)教学过程设计

看一看

1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤:

①________________②__________

2.应用因式分解解简单的一元二次方程.

依据__________,一般步骤:__________

做一做

1.计算:

(1)(-a2b2+16)÷(4-ab);

(2)(18x2-12xy+2y2)÷(3x-y).

2.解下列方程:

(1)3x2+5x=0;

(2)9x2=(x-2)2;

(3)x2-x+=0.

3.完成课后练习题

想一想

你还有哪些地方不是很懂?请写出来。

____________________________________

(四)预习检测

1.计算:

2.先请同学们思考、讨论以下问题:

(1)如果a×5=0,那么a的值

(2)如果a×0=0,那么a的值

(3)如果ab=0,下列结论中哪个正确( )

①a、b同时都为零,即a=0,

且b=0;

②a、b中至少有一个为零,即a=0,或b=0;

(五)应用探究

1.解下列方程

2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值

(六)拓展提高:

解方程:

1、(x2+4)2-16x2=0

2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?

(七)堂堂清练习

1.计算

2.解下列方程

①7x2+2x=0

②x2+2x+1=0

③x2=(2x-5)2

④x2+3x=4x

数的分解教案篇6

教学目标:

1、进一步巩固因式分解的概念;

2、巩固因式分解常用的三种方法

3、选择恰当的方法进行因式分解

4、应用因式分解来解决一些实际问题

5、体验应用知识解决问题的乐趣

教学重点:

灵活运用因式分解解决问题

教学难点:

灵活运用恰当的因式分解的方法,拓展练习2、3

教学过程:

一、创设情景:若a=101,b=99,求a2-b2的值

利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

二、知识回顾

1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.

判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)

(1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法

(3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解

(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解

(7).2πr+2πr=2π(r+r)因式分解

2、.规律总结(教师讲解):分解因式与整式乘法是互逆过程.

分解因式要注意以下几点:(1).分解的对象必须是多项式.

(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.

3、因式分解的方法

提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法

公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2

4、强化训练

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的性质

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

试一试把下列各式因式分解:

(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)

三、例题讲解

例1、分解因式

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)

(3)(4)y2+y+

例2、分解因式

1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=

例3、分解因式

1、72-2(13x-7)22、8a2b2-2a4b-8b3

三、知识应用

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2

4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除吗?还能被哪些整数整除?

四、拓展应用

1.计算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

2、20042+20xx被20xx整除吗?

3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.

五、课堂小结:今天你对因式分解又有哪些新的认识?

数的分解教案篇7

因式分解

教材分析

因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。

教学目标

认知目标:(1)理解因式分解的概念和好处

(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。

情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

目标制定的思想

1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。

2.课堂教学体现潜力立意。

3.寓德育教育于教学之中。

教学方法

1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。

2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。

3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。

4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。

5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。

教学过程安排

一、提出问题,创设情境

问题:看谁算得快?(计算机出示问题)

(1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

(2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000

(3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

二、观察分析,探究新知

(1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案)

(2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式?

a2—2ab+b2=(a—b)2②

20x2+60x=20x(x+3)③

(3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。

板书课题:§7。1因式分解

1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

三、独立练习,巩固新知

练习

1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示)

①(x+2)(x—2)=x2—4

②x2—4=(x+2)(x—2)

③a2—2ab+b2=(a—b)2

④3a(a+2)=3a2+6a

⑤3a2+6a=3a(a+2)

⑥x2—4+3x=(x—2)(x+2)+3x

⑦k2++2=(k+)2

⑧x1=(x—1+1)(x1)

⑨18a3bc=3a2b·6ac

2.因式分解与整式乘法的关系:

因式分解

结合:a2—b2=========(a+b)(a—b)

整式乘法

说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

结论:因式分解与整式乘法正好相反。

问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗?

(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

四、例题教学,运用新知:

例:把下列各式分解因式:(计算机演示)

(1)am+bm(2)a2—9(3)a2+2ab+b2

(4)2ab—a2—b2(5)8a3+b6

练习2:填空:(计算机演示)

(1)∵2xy=2x2y—6xy2

∴2x2y—6xy2=2xy

(2)∵xy=2x2y—6xy2

∴2x2y—6xy2=xy

(3)∵2x=2x2y—6xy2

∴2x2y—6xy2=2x

五、强化训练,掌握新知:

练习3:把下列各式分解因式:(计算机演示)

(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

(4)x2+—x(5)x2—0。01(6)a3—1

(让学生上来板演)

六、变式训练,扩展新知(计算机演示)

1。若x2+mx—n能分解成(x—2)(x—5),则m=,n=

2.机动题:(填空)x2—8x+m=(x—4),且m=

七、整理知识,构成结构(即课堂小结)

1.因式分解的概念因式分解是整式中的一种恒等变形

2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。

3.利用2中关系,能够从整式乘法探求因式分解的结果。

4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。

八、布置作业

1.作业本(一)中§7。1节

2.选做题:①x2+x—m=(x+3),且m=。

②x2—3x+k=(x—5),且k=。

评价与反馈

1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。

2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。

3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。

4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。

5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。

6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。

会计实习心得体会最新模板相关文章:

开小车教案7篇

鹅音乐教案模板7篇

篮球运球教案7篇

中班亲子游戏教案7篇

中班小猫钓鱼教案7篇

拓印树叶画教案7篇

法制与安全教案7篇

小鱼面教案7篇

开心帽中班教案7篇

抢珍珠教案7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    60458

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。