久久美篇网 >心得体会

分数的乘法教学反思7篇

教学反思是善于发现自己教学中的中的问题,大家在进行了教学反思的书写后,可以让自己的教学过程更顺利,以下是久久美篇网小编精心为您推荐的分数的乘法教学反思7篇,供大家参考。

分数的乘法教学反思7篇

分数的乘法教学反思篇1

分数乘法是在前面学生掌握了整数乘法、分数加减法、分数的意义和性质等知识的基础上进行教学的。

成功之处:

1.明晰分数乘法的意义。分数乘法包含两种情况:一种是分数乘整数,另一种是分数乘分数。在教学分数乘整数的意义中又分为两种情况:一是分数乘整数;二是整数乘分数。虽然它们的计算方法相同,但是表示的意义却不相同。学生非常容易在此处出现意义上的模糊。例如:2/3×4表示4个2/3是多少,而4×2/3表示4的2/3是多少。教学分数乘分数的意义时,学生出错较少,能够清晰的表示出分数乘分数的意义。

2.明确分数乘法的计算方法。在教学中,对于分数乘整数的计算方法要让学生明确分数的分子与整数相乘的积作分子,分母不变;而对于分数乘分数的计算方法要让学生明确分子相乘的积作分子,分母相乘的积作分母。在计算中先约分,再计算,会使计算变得简便。

不足之处:

1.学生在计算分数乘整数时,还是有个别同学把整数和分子约分计算,还有的出现先计算,再约分,容易出现约分后的分数不是最简分数。

2.在计算小数乘分数时,学生容易出现小数与分母约分后得整数的现象。

3.在简便方法计算时,学生容易出现应用乘法分配律进行计算的错误。特别是形如2/99×7/16这样的题目,学生往往不知道是应该应用乘法分配律来进行计算。

再教设计:

1.强调分数乘整数的计算方法,特别是整数必须要与分母约分。

2.强化练习形如2/99×7/16这样的题目,避免学生在此题目上出错。

分数的乘法教学反思篇2

回顾本节教学,我感到既有成功的喜悦也有不足,具体体现在以下几个方面:

1、充分重视了学生的兴趣,在整节课中我营造了一种民主、和谐、宽松、自由的教学氛围,既为新知的学习营造良好的氛围,也让学生在不知不觉间做好情感上的准备。例题的选择、练习的设计都和生活实际相关,学生自始至终保持浓厚的兴趣,也体现了课堂教学整体结构的美。

2、本节课的教学中特别强调了线段图的作用,线段图的教学从三年级就开始了,但在平时的解题过程中学生没有利用线段图帮助分析理解题意的意识和习惯,究其原因是学生没有体会到线段图的作用,认为这是可有可无的东西,本节课这么强调线段图就是想让学生明白线段图能让你更清楚地找到数量之间的等量关系,能帮你找到与众不同的解法,能让你更准确地把握住数量之间的对应关系等等,只有让学生真正的明白其作用,才能有用的意识,从而形成用的习惯。

不足之处:

1.本节课,花了较多的时间让学生说不同的思考方法、思考过程,对于哪些学困生来说是不是有必要,因为他们只能听懂其中的某一些解法,在别人“说”的时候,他们在一定的时间段里成了“观众”和“听众”,如何更好地面向每一位学生是以后努力的方向。

2.反馈形式比较单调,缺乏激励性的语言和形式,某种程度上影响了学生学习的积极性,应采取多种形式如让学生间搞个小竞赛等来活跃课堂气氛,激发学生学习的兴趣。

分数的乘法教学反思篇3

本单元是分数乘法,而《分数乘法(一)》只是其中最基本的知识点,本节课是分数乘以整数,也就是求一个的几分之几是多少?所以在课的开始,我先复习整数乘以整数的意义,为学生的新知打下伏笔,在探究新知时,学生对3个1/5是多少理解起来就很简单了,计算的时候学生虽然不会,但懂得用加法来算,过渡到乘法,学生自然明白了结果,在适当的时候,我让学生观察乘法,得到什么样的规律时,学生说出:方法是分母不变,分子乘以整数做分子。

对于课本出现的总结“分母不变”。我觉得不够严谨。因为在计算过程中能约分的线约分,所以不能说分母不变。

在计算方法的教学中,沟通了加法和乘法的关系,学生从加法计算的角度尝试计算分数乘以整数。学生根据图形理解了为什么分数乘以整数的算理,明白3/5就是3个1/5,再乘以3就是9个1/5,也就是9/5.在次,追问;为什么分母不变呢,因为分数单位没有变,所以分母不变、为什么分子却发生了变化呢?那是因为,原来的`分子3表示有3个分数单位,再乘以3,就有这样的9个分数单位,所以分子是3×3=9.这样更进一步的让学生理解了计算过程中,分子分母的计算。

遗憾的是:原以为这是一节很简单的课,但学生在看图写算式时,居然会把阴影部分写成整数。还有的学生居然把整数写成分母,说明课堂上老师的引导依然没有透彻。

分数的乘法教学反思篇4

?分数乘法(二)》其实是进一步探索并理解分数乘整数的意义,并能正确计算,能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。根据第一课时学生作业反馈情况,我调整了教学模式,让学生先学后教,课堂上学生讨论明白了:谁是单位“1”,单位“1”已知的,用乘法计算(虽然这部分知识目前没有涉及),我认为适当渗透有利今后的教学。

学生的理解也各有千秋,这体现了“不同的.人学习不同的数学”,有的学生用分数加法来理解分数的意义以及计算方法;有的学生能够从整数和分子相乘,分母不变。

从编者意图可以看出:用图形来理解分数乘整数的意义是重要的,于是在计算前充分感知涂图形的过程,为后面计算打下基础。有了几节课的铺垫,学生在计算过程中没多大的错误,说明了学生对算理的理解比较清晰,很多学生对约分还是做得比较好。

但在一位学生的作业中,清楚看到这个学生没有把约分后的分母做分母,依然是原来的分母做分母。经过辅导,学生明白了道理,同时反应课堂上还存在了优生抢了课堂的风头。

分数的乘法教学反思篇5

在这一个月里的教学内容是分数乘法,重点是巩固和进化理解分数乘法的意义,探索分数乘法的计算法则。在这一个月的教学工作中,感触很深。

一、充分利用学生已有的知识水平与生活经验,实现新知识的迁移。

在教学分数和整数相乘时,根据学生的已有的知识基础,设计了复习整理整数乘法的意义和同分母分数的加法的计算法则。在教学分数和整数相乘的计算法则时,我指导学生通过联系旧知识去探究学习,例如:教学2/9×3,首先要让学生明确,要求3个2/9相加的和,也就是求2/9+2/9+2/9是多少,并联系同分母分数加法的计算得出2+2+2/9,然后让学生分析分子部分3个2 连加就是2×3,并算出结果,在此基础上,引导学生观察计算过程,特别是2/9×3与3×2/9之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练3×2/9,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。

二、把直观操作与抽象推理相结合,理解分数乘法的计算法则的推导过程。

由于分数乘法的计算法则比较抽象,学生理解起来有一定的困难。教学时我尽量加强直观,变抽象为形象,多给学生创造对手操作的机会,激发学生学习的兴趣,使他们主动地参与到教学过程中来。在直观操作的基础上在推导出分数乘分数的计算方法,进而概括出分数乘法的法则。

培养学生良好的计算习惯和认真的学习态度。学生掌握这部分内容并不困难,但要通过这部分内容的学习和练习,培养其认真审题、注意运算顺序、观察数字特点,选择简便方法等良好的计算习惯和严谨认真的学习态度,为他们以后的学习打好基础。

三、还要重视学法指导,培养学生的内推力。

在这一个月来,课堂上的内容都比较顺利的完成了,但从学生的反馈信息收获不是很成功,小部分的学困生对所学的还是没完全的消化好。

总之,在今后上数学课时应充分调动学生的各种感官,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。

分数的乘法教学反思篇6

本节课是分数乘法式题的教学,教者有意安排了一道带分数乘法的式子题,旨在进一步提高学生的计算能力。但这节课在诸多方面已经远远超越了教者的本意,达到了一个新的境界,这是一节非常成功的数学课,本人认为这节课有以下几方面的优点:

1、改变了单纯的知识传授者的身份

在本节课中,教师积极创设了有利于学生自主学习的环境:“猜一猜,”真是这个“猜一猜”点燃了学生思维的火化,开放了学生思维的空间。教者并没有直接告知学生如何去计算,不只是单纯的进行

知识灌输,不再是用原有的“教师中心”的做法,已经站到了学生的中间,从学生的经验出发组织学生的学习,为学生提供了更多的发展机会。

2、倡导个性化的知识生成方式

新课程实施旨在扭转“知识传授”为特征的局面,把转变学生的.学习方式为重要的着眼点,以尊重学生学习方式的独特性和个性化为基本信条、新课程要求在学科领域的教学中渗透“自主、探究、与合作”的学习方式。在本案例中,教者不再仅仅是“教教材”,当问题出现后,不再是教者面对知识的独白,并没有告知学生如何去做,而是让学生先“猜一猜”,说说自己的想法。当学生提出不同的见解后,又积极引导学生对有价值的“经验、见解”深入进行探究,共同寻求解决问题的方法。这已经超出了个人化行为,成为群体合作行为,与学生建立了真正的对话关系,超越自己个体的有限视界,填平“知识权威”与“无知者”之间的鸿沟。这一切有助于学生个性化的知识生成,更有助于学生形成“不断进取,不断创新”的精神世界。

3、把握生成,与境俱进

记得一位教育专家曾经说过这样一句话:“每一节课都有生成,只是教师有没有注意吧了。”在本案例中,教者能做到“与境俱进”,能在预设“猜一猜”的基础上,抓住生成,及时灵活处理具有“生成价值”的问题与回答,就话答话,“与境具进”,及时引导学生针对提出的话题展开探讨。整个教学充满灵动、智慧、活力,课堂教学真正做到“开放”与“灵活”,充分促进学生自主和富有个性化、创造性地学习。

课改大潮轰轰烈烈,涤荡着每一个角落。当前的课堂教学如何实施,我想本案例很值得我们学习和借鉴。

分数的乘法教学反思篇7

分数乘除法应用题是较复杂的分数应用题的基础,教者在本节课中的目的主要是为了让学生弄清分数乘法和除法应用题的区别和联系,能够应用“单位“1”的量×分率=比较量“这个数量关系,根据已知量和未知量来判断是分数乘法还是除法应用题。教材为此也安排了例2这个例题:

例2:长江流域约有120种矿产资源,可供开发的占。长江流域的矿产资源种数约占全国的30。3756

(1)长江流域可供开发的矿产资源有多少种?

(2)全国的矿产资源有多少种?

其中第(1)题是一道分数乘法应用题,第(2)题是一道分数除法应用题。教材的编排意图是通过两题的比较,去找到二者的区别和联系。为此,我在教学中的流程也很简明:先学生自己两道题,然后再讨论两道题的联系和区别,最后教师总结。整个过程充分体现了学生的主动性,充分给予时间和空间,让学生参与了知识的形成过程,体验成功的快乐。

然而,我教学中却发现:学生要发现两道题的区别和联系并不容易,课后从学生的作业情况看效果也不是很理想。是什么阻碍了学生知识的形成呢?我在课后经过分析,认为是教材编排的这个例题对于本课的知识目标形成的针对性不强,或者说是例题中包含的其他东西太多干扰了学生对两题的对比。

首先,两道题中包含了3个量即长江流域的矿产资源、长江流域可供开发的矿产资源和全国的矿产资源。这三个量中有两个量都是单位“1”,虽然这并没有超出学生的现有的认知水平,但是却使问题复杂化了,对于本课的教学目的'起到了一个干扰作用。

其次,本例中的第(1)题中的单位“1”的量是长江流域的矿产资源,是已知量。而第(2)题中的单位“1”的量是全国的矿产资源,是未知量。两道题的数量关系分别是:长江流域的矿产资源×=长江流域可供开发的资源和全国的矿产资源×30=长江流域的矿产资3756源。两道题的数量关系和单位“1”的量都不一样,也不利于学生比较。这也造成本节课目标达成的难度增加。

最后,例题中文字较多,特别是几个量的文字叙述较多,这也给部分学生,特别是理解能力较差的学生增添了麻烦,他们也许要为弄清题意费上一阵时间。

综上所述,我认为教材在编写这个例题也许太过注重联系生活实际等方面的原因,造成对本课的目标达成难度增大。这个例题是不合适的。为此我设计了这样一个区别比较的例题:

例2:(1)果园里有60果桃树,李树是桃树的,李树有多少棵?

(2)果园里有60果李树,李树是桃树的,李树有多少棵?

这样的设计我认为有这样几个好处:

1、单位“1”不变,都是桃树。

2、数量关系都是一样:桃树×=李树。既然单位“1”不变,数量关系都一样,为什么却一个是乘法,一个是除法呢?学生再通过565656比较,很容易就发现第1题的单位“1”是已知量,求比较量,当然用乘法。第2题的单位“1”是未知量,求单位“1”,当然是用比较量除以分率,是用除法。

通过这样的例题设计,我认为简明扼要,利于学生认清分数乘除法应用题的区别和联系,更好掌握分数乘除法应用题,为后面的较复杂的分数应用题打下基矗

会计实习心得体会最新模板相关文章:

会说话的手教学反思6篇

比例尺的教学反思5篇

秋天的歌教学反思最新5篇

秋天的歌教学反思精选6篇

认识6到9的教学反思8篇

认识船的教学反思最新6篇

咏柳教学反思7篇

我妈妈教学反思7篇

我妈妈教学反思优质7篇

认识6到9的教学反思优质5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    122924

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。